Every IM K-5 lesson starts with an invitation to the mathematics. This invitation is an engaging, brief activity called a warm-up routine. Each warm-up routine is designed to get students thinking and talking about math in ways that make sense to them.

There are 10 different warm-up routines that your child might see throughout the year. This guide can help you know what to expect and how to participate.
Act it Out 2
Choral Count 3
Estimation Exploration 4
How Many Do You See? 5
Notice and Wonder 6
Number Talk 7
Questions About Us 8
True or False? 9
What Do You Know About
? 10
Which One Doesn't Belong? 11

Act it Out	
Purpose	This routine is for kindergarten and first grade students. It encourages young children to understand the relationship between words and numbers. It provides opportunities for students to make sense of story problems.
Summary	Students listen to a story problem and act it out through movement, using their fingers, or objects to represent the action in the story.
Example	

Estimation Exploration			
Surpose	This routine encourages students to use their own experiences and what they already know to make good estimates and justify their reasoning.		
Students make estimates in response to a question about an image. They first think about estimates that would be sensible, but too high or too low. Then they make a reasonable estimate and discuss why their estimate makes sense.			
	How tall is the man in inches?		

How Many Do You See?		
Purpose	This routine encourages students to see groups when counting. Being able to see groups of objects in an organized way helps them visualize quantities and improves their ability to do mental computation.	
Summary	Students look at an image, which is typically an arrangement of dots or other shapes. Then students state how many dots or shapes they see. Also included in the discussion will be comments about the way they saw them or determined how many there were. This encourages students to see groups and patterns rather than count each item one by one.	
	Grade 1	Grade 3
Examples		$\left.\begin{array}{rl} 0 & 0 \end{array} \begin{array}{llll} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$
Questions to ask	- How many do you see and how do you see them? - Could you count them in a different way? - What was helpful in finding the total number of dots?" - How many dots would there be if there was another group of them?	

Notice and Wonder

Purpose	This routine provides an opportunity for students to bring their understandings and experiences to a problem. They share their ideas and ask questions without any pressure to answer or solve a problem. This routine reinforces the importance of making sense of situations before solving a problem.
Summary	Students look at an image related to the topic of the lesson and are asked, "What do you notice?" The teacher writes all comments on a chart. They are then asked, "What do you wonder?", and their questions are also recorded on the chart.
	Kindergarten Grade 3
Examples	
Questions to ask	- What do you notice? - What do you wonder? - What questions could you answer using the image? - What other questions do you have?

Number Talk	
Purpose	This routine provides an opportunity for students to practice mental math. It helps them solve problems and think about numbers in flexible ways. They not only justify their own reasoning, but critique the reasoning of others as they make sense of methods for solving problems.
Summary	A series of problems are presented one at a time. Students solve the problem in their head and signal when they have an answer. The teacher takes notes as they justify their answer and explain their method for solving.
	Grade 1 Grade 5
Examples	$27+3$ 50×6 $27+5$ 50×60 $25+7$ 50×600 $35+7$ 60×500
Questions to ask	- How did you solve the problem? - Why did you choose that strategy? - Did one one problem help you solve another problem? How? - What other problem would you add to this string? Why?

Questions About Us		
Purpose	This routine is used with kindergarten students. It provides them opportunities to learn more about their classmates and gives them practice asking questions, organizing quantities, counting, and analyzing data.	
Summary	Students ask their classmates a question with two choices. They keep track of the answers and count the responses. The teacher then asks follow up questions that students answer using the data that they collected.	
	Kindergarten	
Examples	Would you rather play on the slide or on the swings?	Which do you like better: cats or dogs?
Questions to ask	- How can we figure out how many students would rather play on the slide? - How many students would rather play on the slide? - How can we figure out how many students would rather play on the swings? - How many students would rather play on the swings?"	- How many people like cats better? - How many people like dogs better? - If 1 more person likes cats, how many? - If 1 less person likes dogs, how many?

True or False?

Purpose	This routine encourages students to make sense of equations, often without any computation. It provides another opportunity for students to justify their reasoning as they explain to others what they are thinking.
Summary	Students are presented with a series of equations, one at a time. Some equations may be true, and some may be false. Students use what they know about place value, operations, and number relationships to decide if each is true or false. And then, students explain how they know.
	Grade 1 Grade 4
Examples	Is each statement true or false? $\begin{gathered} 5=5 \\ 4+1=5 \\ 6=4+1 \\ 1+4=4+1 \end{gathered}$ Is each statement true or false? $\begin{gathered} 2 \times 7=3 \times 7 \\ 3 \times 8=3 \times 6 \\ 2 \times 8=4 \times 4 \\ 2 \times 12=3 \times 6 \end{gathered}$
Questions to ask	- How did you decide if the equation was true or false? - If false, how could you make it true? - Can you prove it is true or false without solving both sides of the equation?

What Do You Know About __?		
Purpose	This routine encourages students to share their experiences and understandings about a math topic.	
Summary	Students are presented with a number, expression, or are asked a general question about a math topic. They then list everything they know about that topic. The teacher writes what students say and then references the list later so that students can add more ideas.	
	Grade 2	Grade 5
Examples	What do you know about the number 49 ?	Write everything you know about 6.497
Questions to ask	- Can you draw a picture or diagram to show what you know about \qquad ? - What experience do you have with \qquad ? - Where might you see \qquad ? - How would you use \qquad ? - When responding to a number: - How could you represent that number using a number line or place value blocks? - What are some numbers that are larger/smaller than that number? - What equations can you write using that number?	

Which One Doesn't Belong?

Purpose	This routine provides an opportunity for students to reason about characteristics of shapes, math tools, or other images to decide which one doesn't belong. Because any answer is correct, students are able to focus on communicating their reasoning and justifying their choice.
Summary	Students are shown 4 different images, which may be numbers, equations, shapes, images, or diagrams. They decide which one doesn't belong and explain why.
	Grade $2 \times$ Grade 5
Examples	
Questions to ask	- Which one doesn't belong? Why? - What is the same and different about the others? - Can you think of a reason why another one doesn't belong?

